Continual Learning and Model Update Strategies for Fine-Tuned Models Träningskurs
Continual learning är en uppsättning strategier som möjliggör för maskininlärningsmodeller att uppdateras inkrementellt och anpassas till nya data över tid.
Denna instruktörsledda, live-träning (online eller på plats) riktar sig till avancerade AI-underhållsingenjörer och MLOps-professionella som vill implementera robusta kontinuerliga inlärningspipelines och effektiva uppdateringsstrategier för distribuerade, fintunerade modeller.
Efter denna träning kommer deltagarna att kunna:
- Designa och implementera kontinuerliga inlärningsarbetsflöden för distribuerade modeller.
- Minska katastrofalt glömska genom korrekt träning och minneshantering.
- Automatisera övervakning och uppdateringsutlösnare baserat på modelldrift eller datamodifikationer.
- Integrera modelluppdateringsstrategier i befintliga CI/CD- och MLOps-pipelines.
Kursformat
- Interaktiv föreläsning och diskussion.
- Många övningar och praktiska övningar.
- Hands-on implementation i en live-lab-miljö.
Alternativ för kursanpassning
- För att begära en anpassad träning för denna kurs, kontakta oss för att ordna.
Kursplan
Introduktion till kontinuerligt lärande
- Varför kontinuerligt lärande är viktigt
- Utmaningar med att upprätthålla finjusterade modeller
- Nyckelstrategier och lärostyper (online, inkrementell, överföring)
Hantering av data och strömningspipelines
- Hantering av utvecklande datamängder
- Online-lärande med minibatcher och strömnings-APIer
- Utmaningar med dataetikettering och annotering över tid
Förebyggande av katastrofalt glömskap
- Elastisk viktkonsolidering (EWC)
- Återupptagelse-metoder och övningsstrategier
- Reglering och minnesaugmenterade nätverk
Modelldrift och övervakning
- Upptäckande av data- och konceptdrift
- Mått på modellhälsa och prestandeförfall
- Utlösning av automatiska modelluppdateringar
Automatisering vid modelluppdatering
- Automatiserad omträning och schemaläggningsstrategier
- Integration med CI/CD- och MLOps arbetsflöden
- Hantering av uppdateringsfrekvens och återställningsplaner
Ramverk och verktyg för kontinuerligt lärande
- Översikt över Avalanche, Hugging Face datamängder, och Torch Replay
- Plattformstöd för kontinuerligt lärande (t.ex., MLflow, Kubeflow)
- Scalability och distribueringsöverväganden
Verkliga Use Caseer och arkitekturer
- Prediktion av kundbeteenden med utvecklande mönster
- Industriell maskinövervakning med inkrementella förbättringar
- Bedrägeridetekteringssystem under förändrade hotmodeller
Sammanfattning och nästa steg
Krav
- Förståelse för maskininlärningsarbetsflöden och neurala nätverksarkitekturer
- Erfarenhet av modelljustering och distributionspipelines
- Kännedom om dataversionering och modellcykelhantering
Målgrupp
- AI underhållsingenjörer
- MLOps ingenjörer
- Maskininlärningspraktiker som ansvarar för modellcykelkontinuitet
Open Training Courses require 5+ participants.
Continual Learning and Model Update Strategies for Fine-Tuned Models Träningskurs - Booking
Continual Learning and Model Update Strategies for Fine-Tuned Models Träningskurs - Enquiry
Continual Learning and Model Update Strategies for Fine-Tuned Models - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses
Relaterade Kurser
Advanced Techniques in Transfer Learning
14 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till maskininlärningsproffs på avancerad nivå som vill behärska banbrytande överföringsinlärningstekniker och tillämpa dem på komplexa verkliga problem.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå avancerade begrepp och metoder inom överföringsinlärning.
- Implementera domänspecifika anpassningstekniker för förtränade modeller.
- Tillämpa kontinuerlig inlärning för att hantera föränderliga uppgifter och datauppsättningar.
- Bemästra finjustering av flera uppgifter för att förbättra modellens prestanda mellan uppgifter.
Deploying Fine-Tuned Models in Production
21 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på avancerad nivå som vill distribuera finjusterade modeller på ett tillförlitligt och effektivt sätt.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå utmaningarna med att distribuera finjusterade modeller till produktion.
- Containerisera och distribuera modeller med hjälp av verktyg som Docker och Kubernetes.
- Implementera övervakning och loggning för distribuerade modeller.
- Optimera modeller för svarstid och skalbarhet i verkliga scenarier.
Domain-Specific Fine-Tuning for Finance
21 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till yrkesverksamma på mellannivå som vill få praktiska färdigheter i att anpassa AI-modeller för kritiska finansiella uppgifter.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå grunderna för finjustering för ekonomiprogram.
- Utnyttja förtränade modeller för domänspecifika uppgifter inom ekonomi.
- Tillämpa tekniker för upptäckt av bedrägerier, riskbedömning och generering av finansiell rådgivning.
- Se till att finansiella regler som GDPR och SOX följs.
- Implementera datasäkerhet och etiska AI-metoder i finansiella applikationer.
Fine-Tuning Models and Large Language Models (LLMs)
14 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på mellannivå till avancerad nivå som vill anpassa förtränade modeller för specifika uppgifter och datauppsättningar.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå principerna för finjustering och dess tillämpningar.
- Förbered datauppsättningar för finjustering av förtränade modeller.
- Finjustera stora språkmodeller (LLM) för NLP-uppgifter.
- Optimera modellens prestanda och hantera vanliga utmaningar.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 timmarDenna instruktörsledda, liveträning i Sverige (online eller på plats) riktar sig till utvecklare på mellannivå och AI-utövare som vill implementera finjusteringsstrategier för stora modeller utan behov av omfattande beräkningsresurser.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå principerna för Low-Rank Adaptation (LoRA).
- Implementera LoRA för effektiv finjustering av stora modeller.
- Optimera finjustering för resursbegränsade miljöer.
- Utvärdera och distribuera LoRA-avstämda modeller för praktiska tillämpningar.
Fine-Tuning Multimodal Models
28 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på avancerad nivå som vill behärska finjustering av multimodala modeller för innovativa AI-lösningar.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå arkitekturen för multimodala modeller som CLIP och Flamingo.
- Förbered och förbearbeta multimodala datauppsättningar effektivt.
- Finjustera multimodala modeller för specifika uppgifter.
- Optimera modeller för verkliga program och prestanda.
Fine-Tuning for Natural Language Processing (NLP)
21 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till yrkesverksamma på mellannivå som vill förbättra sina NLP-projekt genom effektiv finjustering av förtränade språkmodeller.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå grunderna för finjustering för NLP-uppgifter.
- Finjustera förtränade modeller som GPT, BERT och T5 för specifika NLP-applikationer.
- Optimera hyperparametrar för bättre modellprestanda.
- Utvärdera och distribuera finjusterade modeller i verkliga scenarier.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till avancerade AI-forskare, maskininlärningsingenjörer och utvecklare som vill finjustera DeepSeek LLM-modeller för att skapa specialiserade AI-applikationer som är anpassade till specifika industrier, domäner eller affärsbehov.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå arkitekturen och kapabiliteterna hos DeepSeek modeller, inklusive DeepSeek-R1 och DeepSeek-V3.
- Förbereda datasets och förbehandla data för finjustering.
- Finjustera DeepSeek LLM för domänspecifika applikationer.
- Optimera och distribuera finjusterade modeller effektivt.
Fine-Tuning Large Language Models Using QLoRA
14 timmarDenna instruktörsledda, live-träning i Sverige (online eller på plats) riktar sig till maskininlärningsingenjörer, AI-utvecklare och datavetenskapsmän på mellan- till avancerad nivå som vill lära sig hur man använder QLoRA för att effektivt finjusterar stora modeller för specifika uppgifter och anpassningar.
Efter denna träning kommer deltagarna att kunna:
- Förstå teorin bakom QLoRA och kvantiseringstekniker för stora språkmodeller.
- Implementera QLoRA i finjustering av stora språkmodeller för domänspecifika tillämpningar.
- Optimera finjusteringens prestanda på begränsade beräkningsresurser med hjälp av kvantisering.
- Distribuera och utvärdera finjusterade modeller effektivt i verkliga tillämpningar.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 timmarDenna instruktörledda, live-träning i Sverige (online eller på plats) riktar sig till avancerade maskininlärningsingenjörer och AI-forskare som vill tillämpa RLHF för att finjustera stora AI-modeller för överlägsen prestanda, säkerhet och samstämmighet.
Efter denna träning kommer deltagarna att kunna:
- Förstå de teoretiska grunderna för RLHF och varför det är avgörande i modern AI-utveckling.
- Implementera belöningsmodeller baserade på mänsklig återkoppling för att styra förstärkningsinlärningsprocesser.
- Finjustera stora språkmodeller med hjälp av RLHF-tekniker för att samstämmighet med människors preferenser.
- Tillämpa bästa praxis för att skala RLHF-arbetsflöden för produktionskvalificerade AI-system.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på avancerad nivå som vill behärska tekniker för att optimera stora modeller för kostnadseffektiv finjustering i verkliga scenarier.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå utmaningarna med att finjustera stora modeller.
- Tillämpa distribuerade träningstekniker på stora modeller.
- Utnyttja modellkvantisering och rensning för effektivitet.
- Optimera maskinvaruanvändningen för finjusteringsuppgifter.
- Distribuera finjusterade modeller effektivt i produktionsmiljöer.
Prompt Engineering and Few-Shot Fine-Tuning
14 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på mellannivå som vill utnyttja kraften i snabb teknik och få skottinlärning för att optimera LLM-prestanda för verkliga applikationer.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå principerna för snabb teknik och inlärning med få skott.
- Utforma effektiva uppmaningar för olika NLP-uppgifter.
- Utnyttja några få tekniker för att anpassa LLM:er med minimal data.
- Optimera LLM-prestanda för praktiska tillämpningar.
Parameter-Efficient Fine-Tuning (PEFT) Techniques for LLMs
14 timmarDenna ledarstyrda, liveutbildning online eller på plats är riktad till datavetare och AI-ingenjörer med mellanavancerad kunskap som vill justera stora språkmodeller mer kostnadseffektivt och effektivt med metoder som LoRA, Adapter Tuning och Prefix Tuning.
Efter denna utbildning kommer deltagarna att kunna:
- Förstå teorin bakom parameter-effektiva metodik för finjustering.
- Implementera LoRA, Adapter Tuning och Prefix Tuning med hjälp av Hugging Face PEFT.
- Jämföra prestanda och kostnadsavvägningar mellan PEFT-metoder och fullständig finjustering.
- Distribuera och skalbar finjustera stora språkmodeller med minskade beräknings- och lagringskrav.
Introduction to Transfer Learning
14 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till maskininlärningsproffs på nybörjarnivå till mellannivå som vill förstå och tillämpa överföringsinlärningstekniker för att förbättra effektivitet och prestanda i AI-projekt.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå de grundläggande begreppen och fördelarna med överföringsinlärning.
- Utforska populära förtränade modeller och deras program.
- Utför finjustering av förtränade modeller för anpassade uppgifter.
- Tillämpa överföringsinlärning för att lösa verkliga problem inom NLP och datorseende.
Troubleshooting Fine-Tuning Challenges
14 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på avancerad nivå som vill förfina sina färdigheter i att diagnostisera och lösa finjusteringsutmaningar för maskininlärningsmodeller.
I slutet av denna utbildning kommer deltagarna att kunna:
- Diagnostisera problem som överanpassning, underanpassning och obalans i data.
- Implementera strategier för att förbättra modellkonvergensen.
- Optimera finjustering av pipelines för bättre prestanda.
- Felsök träningsprocesser med hjälp av praktiska verktyg och tekniker.