Safety and Bias Mitigation in Fine-Tuned Models Träningskurs
Safety and Bias Mitigation in Fine-Tuned Models is a growing concern as AI becomes more embedded in decision-making across industries and regulatory standards continue to evolve.
This instructor-led, live training (online or onsite) is aimed at intermediate-level ML engineers and AI compliance professionals who wish to identify, evaluate, and reduce safety risks and biases in fine-tuned language models.
By the end of this training, participants will be able to:
- Understand the ethical and regulatory context for safe AI systems.
- Identify and evaluate common forms of bias in fine-tuned models.
- Apply bias mitigation techniques during and after training.
- Design and audit models for safety, transparency, and fairness.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Kursplan
Foundations of Safe and Fair AI
- Key concepts: safety, bias, fairness, transparency
- Types of bias: dataset, representation, algorithmic
- Overview of regulatory frameworks (EU AI Act, GDPR, etc.)
Bias in Fine-Tuned Models
- How fine-tuning can introduce or amplify bias
- Case studies and real-world failures
- Identifying bias in datasets and model predictions
Techniques for Bias Mitigation
- Data-level strategies (rebalancing, augmentation)
- In-training strategies (regularization, adversarial debiasing)
- Post-processing strategies (output filtering, calibration)
Model Safety and Robustness
- Detecting unsafe or harmful outputs
- Adversarial input handling
- Red teaming and stress testing fine-tuned models
Auditing and Monitoring AI Systems
- Bias and fairness evaluation metrics (e.g., demographic parity)
- Explainability tools and transparency frameworks
- Ongoing monitoring and governance practices
Toolkits and Hands-On Practice
- Using open-source libraries (e.g., Fairlearn, Transformers, CheckList)
- Hands-on: Detecting and mitigating bias in a fine-tuned model
- Generating safe outputs through prompt design and constraints
Enterprise Use Cases and Compliance Readiness
- Best practices for integrating safety in LLM workflows
- Documentation and model cards for compliance
- Preparing for audits and external reviews
Summary and Next Steps
Krav
- An understanding of machine learning models and training processes
- Experience working with fine-tuning and LLMs
- Familiarity with Python and NLP concepts
Audience
- AI compliance teams
- ML engineers
Open Training Courses require 5+ participants.
Safety and Bias Mitigation in Fine-Tuned Models Träningskurs - Booking
Safety and Bias Mitigation in Fine-Tuned Models Träningskurs - Enquiry
Safety and Bias Mitigation in Fine-Tuned Models - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses
Relaterade Kurser
Advanced Techniques in Transfer Learning
14 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till maskininlärningsproffs på avancerad nivå som vill behärska banbrytande överföringsinlärningstekniker och tillämpa dem på komplexa verkliga problem.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå avancerade begrepp och metoder inom överföringsinlärning.
- Implementera domänspecifika anpassningstekniker för förtränade modeller.
- Tillämpa kontinuerlig inlärning för att hantera föränderliga uppgifter och datauppsättningar.
- Bemästra finjustering av flera uppgifter för att förbättra modellens prestanda mellan uppgifter.
Deploying Fine-Tuned Models in Production
21 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på avancerad nivå som vill distribuera finjusterade modeller på ett tillförlitligt och effektivt sätt.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå utmaningarna med att distribuera finjusterade modeller till produktion.
- Containerisera och distribuera modeller med hjälp av verktyg som Docker och Kubernetes.
- Implementera övervakning och loggning för distribuerade modeller.
- Optimera modeller för svarstid och skalbarhet i verkliga scenarier.
Domain-Specific Fine-Tuning for Finance
21 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till yrkesverksamma på mellannivå som vill få praktiska färdigheter i att anpassa AI-modeller för kritiska finansiella uppgifter.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå grunderna för finjustering för ekonomiprogram.
- Utnyttja förtränade modeller för domänspecifika uppgifter inom ekonomi.
- Tillämpa tekniker för upptäckt av bedrägerier, riskbedömning och generering av finansiell rådgivning.
- Se till att finansiella regler som GDPR och SOX följs.
- Implementera datasäkerhet och etiska AI-metoder i finansiella applikationer.
Fine-Tuning Models and Large Language Models (LLMs)
14 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på mellannivå till avancerad nivå som vill anpassa förtränade modeller för specifika uppgifter och datauppsättningar.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå principerna för finjustering och dess tillämpningar.
- Förbered datauppsättningar för finjustering av förtränade modeller.
- Finjustera stora språkmodeller (LLM) för NLP-uppgifter.
- Optimera modellens prestanda och hantera vanliga utmaningar.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 timmarDenna instruktörsledda, liveträning i Sverige (online eller på plats) riktar sig till utvecklare på mellannivå och AI-utövare som vill implementera finjusteringsstrategier för stora modeller utan behov av omfattande beräkningsresurser.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå principerna för Low-Rank Adaptation (LoRA).
- Implementera LoRA för effektiv finjustering av stora modeller.
- Optimera finjustering för resursbegränsade miljöer.
- Utvärdera och distribuera LoRA-avstämda modeller för praktiska tillämpningar.
Fine-Tuning Multimodal Models
28 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på avancerad nivå som vill behärska finjustering av multimodala modeller för innovativa AI-lösningar.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå arkitekturen för multimodala modeller som CLIP och Flamingo.
- Förbered och förbearbeta multimodala datauppsättningar effektivt.
- Finjustera multimodala modeller för specifika uppgifter.
- Optimera modeller för verkliga program och prestanda.
Fine-Tuning for Natural Language Processing (NLP)
21 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till yrkesverksamma på mellannivå som vill förbättra sina NLP-projekt genom effektiv finjustering av förtränade språkmodeller.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå grunderna för finjustering för NLP-uppgifter.
- Finjustera förtränade modeller som GPT, BERT och T5 för specifika NLP-applikationer.
- Optimera hyperparametrar för bättre modellprestanda.
- Utvärdera och distribuera finjusterade modeller i verkliga scenarier.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till avancerade AI-forskare, maskininlärningsingenjörer och utvecklare som vill finjustera DeepSeek LLM-modeller för att skapa specialiserade AI-applikationer som är anpassade till specifika industrier, domäner eller affärsbehov.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå arkitekturen och kapabiliteterna hos DeepSeek modeller, inklusive DeepSeek-R1 och DeepSeek-V3.
- Förbereda datasets och förbehandla data för finjustering.
- Finjustera DeepSeek LLM för domänspecifika applikationer.
- Optimera och distribuera finjusterade modeller effektivt.
Fine-Tuning Large Language Models Using QLoRA
14 timmarDenna instruktörsledda, live-träning i Sverige (online eller på plats) riktar sig till maskininlärningsingenjörer, AI-utvecklare och datavetenskapsmän på mellan- till avancerad nivå som vill lära sig hur man använder QLoRA för att effektivt finjusterar stora modeller för specifika uppgifter och anpassningar.
Efter denna träning kommer deltagarna att kunna:
- Förstå teorin bakom QLoRA och kvantiseringstekniker för stora språkmodeller.
- Implementera QLoRA i finjustering av stora språkmodeller för domänspecifika tillämpningar.
- Optimera finjusteringens prestanda på begränsade beräkningsresurser med hjälp av kvantisering.
- Distribuera och utvärdera finjusterade modeller effektivt i verkliga tillämpningar.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 timmarDenna instruktörsledda, levande träning online eller på plats är riktad till mellanavancerade ML-praktiker och AI-utvecklare som vill finjustera och distribuera öppenviktsmodeller som LLaMA, Mistral och Qwen för specifika affärs- eller interna applikationer.
Vid slutet av denna träning kommer deltagarna att kunna:
- Förstå ekosystemet och skillnaderna mellan öppna källkodens LLMs.
- Förbereda datamängder och finjusteringar av konfigurationer för modeller som LLaMA, Mistral, och Qwen.
- Kör finjusteringspipelines med Hugging Face Transformers och PEFT.
- Utvärdera, spara och distribuera finjusterade modeller i säkra miljöer.
Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems
14 timmarDenna ledarledda, live-utbildning på Sverige (online eller på plats) riktar sig till NLP-ingenjörer och kunskapshanteringsteam på mellanavancerad nivå som vill finjustera RAG-pipelines för att förbättra prestanda i frågesvars-, företagsöknings- och sammanfattningsanvändningsfall.
Efter denna utbildning kommer deltagarna att kunna:
- Förstå arkitekturen och arbetsflödet i RAG-system.
- Finjustera återhämtnings- och generatorkomponenter för domänspecifika data.
- Utvärdera RAG-prestanda och tillämpa förbättringar genom PEFT-tekniker.
- Distribuera optimerade RAG-system för intern eller produktionsanvändning.
Fine-Tuning with Reinforcement Learning from Human Feedback (RLHF)
14 timmarDenna instruktörledda, live-träning i Sverige (online eller på plats) riktar sig till avancerade maskininlärningsingenjörer och AI-forskare som vill tillämpa RLHF för att finjustera stora AI-modeller för överlägsen prestanda, säkerhet och samstämmighet.
Efter denna träning kommer deltagarna att kunna:
- Förstå de teoretiska grunderna för RLHF och varför det är avgörande i modern AI-utveckling.
- Implementera belöningsmodeller baserade på mänsklig återkoppling för att styra förstärkningsinlärningsprocesser.
- Finjustera stora språkmodeller med hjälp av RLHF-tekniker för att samstämmighet med människors preferenser.
- Tillämpa bästa praxis för att skala RLHF-arbetsflöden för produktionskvalificerade AI-system.
Fine-Tuning Vision-Language Models (VLMs)
14 timmarThis instructor-led, live training in Sverige (online or onsite) is aimed at advanced-level computer vision engineers and AI developers who wish to fine-tune VLMs such as CLIP and Flamingo to improve performance on industry-specific visual-text tasks.
By the end of this training, participants will be able to:
- Understand the architecture and pretraining methods of vision-language models.
- Fine-tune VLMs for classification, retrieval, captioning, or multimodal QA.
- Prepare datasets and apply PEFT strategies to reduce resource usage.
- Evaluate and deploy customized VLMs in production environments.
Optimizing Large Models for Cost-Effective Fine-Tuning
21 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på avancerad nivå som vill behärska tekniker för att optimera stora modeller för kostnadseffektiv finjustering i verkliga scenarier.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå utmaningarna med att finjustera stora modeller.
- Tillämpa distribuerade träningstekniker på stora modeller.
- Utnyttja modellkvantisering och rensning för effektivitet.
- Optimera maskinvaruanvändningen för finjusteringsuppgifter.
- Distribuera finjusterade modeller effektivt i produktionsmiljöer.
Prompt Engineering and Few-Shot Fine-Tuning
14 timmarDenna instruktörsledda, liveutbildning i Sverige (online eller på plats) riktar sig till proffs på mellannivå som vill utnyttja kraften i snabb teknik och få skottinlärning för att optimera LLM-prestanda för verkliga applikationer.
I slutet av denna utbildning kommer deltagarna att kunna:
- Förstå principerna för snabb teknik och inlärning med få skott.
- Utforma effektiva uppmaningar för olika NLP-uppgifter.
- Utnyttja några få tekniker för att anpassa LLM:er med minimal data.
- Optimera LLM-prestanda för praktiska tillämpningar.