Tack för att du skickade din fråga! En av våra teammedlemmar kontaktar dig snart.
Tack för att du skickade din bokning! En av våra teammedlemmar kontaktar dig snart.
Kursplan
Introduction to ROS 2 and Autonomous Navigation
- Overview of ROS 2 architecture and capabilities
- Understanding navigation systems in robotics
- Setting up the ROS 2 environment
Working with Sensors and Data Acquisition
- Integrating LiDAR and camera sensors
- Collecting and processing sensor data
- Visualizing sensor outputs using Rviz
Mapping and Localization Fundamentals
- Principles of SLAM
- Implementing 2D and 3D mapping
- Localization using AMCL and other techniques
Path Planning and Obstacle Avoidance
- Exploring path planning algorithms
- Dynamic obstacle detection and avoidance
- Testing navigation in simulated environments
Using Gazebo for Simulation
- Setting up Gazebo simulations with ROS 2
- Testing robot models and navigation stacks
- Analyzing performance in virtual environments
Deploying SLAM and Navigation on Real Robots
- Connecting ROS 2 to physical hardware
- Calibrating sensors and actuators
- Running real-time navigation experiments
Troubleshooting and Performance Optimization
- Debugging navigation issues in ROS 2
- Optimizing SLAM algorithms for efficiency
- Fine-tuning navigation parameters
Summary and Next Steps
Krav
- An understanding of robotics principles
- Experience with Linux-based systems
- Basic knowledge of programming in Python or C++
Audience
- Robotics engineers
- Automation developers
- Research and development professionals in autonomous systems
21 timmar
Vittnesmål (1)
dess kunskap och användning av AI för Robotics i framtiden.
Ryle - PHILIPPINE MILITARY ACADEMY
Kurs - Artificial Intelligence (AI) for Robotics
Maskintolkat