R Fundamentals Träningskurs

Kurskod

bspkrintro

Varaktighet

21 timmar (vanligtvis 3 dag inklusive pauser)

Krav

Good understanding of statistics.

Översikt

R är ett fritt programmeringsspråk med öppen källkod för statistisk beräkning, dataanalys och grafik. R används av ett växande antal chefer och dataanalytiker inom företag och akademi. R har också hittat följare bland statistiker, ingenjörer och forskare utan datorprogrammeringsfärdigheter som tycker det är lätt att använda. Dess popularitet beror på den ökande användningen av data mining för olika mål såsom fastställda annonspriser, snabbare hitta nya läkemedel eller finjustera finansiella modeller. R har ett brett utbud av paket för data mining.

Machine Translated

Kursplan

Day 1

Introduction and preliminaries

  • Making R more friendly, R and available GUIs
  • Rstudio
  • Related software and documentation
  • R and statistics
  • Using R interactively
  • An introductory session
  • Getting help with functions and features
  • R commands, case sensitivity, etc.
  • Recall and correction of previous commands
  • Executing commands from or diverting output to a file
  • Data permanency and removing objects

Simple manipulations; numbers and vectors

  • Vectors and assignment
  • Vector arithmetic
  • Generating regular sequences
  • Logical vectors
  • Missing values
  • Character vectors
  • Index vectors; selecting and modifying subsets of a data set
  • Other types of objects

Objects, their modes and attributes

  • Intrinsic attributes: mode and length
  • Changing the length of an object
  • Getting and setting attributes
  • The class of an object

Ordered and unordered factors

  • A specific example
  • The function tapply() and ragged arrays
  • Ordered factors

Arrays and matrices

  • Arrays
  • Array indexing. Subsections of an array
  • Index matrices
  • The array() function
    • Mixed vector and array arithmetic. The recycling rule
  • The outer product of two arrays
  • Generalized transpose of an array
  • Matrix facilities
    • Matrix multiplication
    • Linear equations and inversion
    • Eigenvalues and eigenvectors
    • Singular value decomposition and determinants
    • Least squares fitting and the QR decomposition
  • Forming partitioned matrices, cbind() and rbind()
  • The concatenation function, (), with arrays
  • Frequency tables from factors

Day 2

Lists and data frames

  • Lists
  • Constructing and modifying lists
    • Concatenating lists
  • Data frames
    • Making data frames
    • attach() and detach()
    • Working with data frames
    • Attaching arbitrary lists
    • Managing the search path

Data manipulation

  • Selecting, subsetting observations and variables          
  • Filtering, grouping
  • Recoding, transformations
  • Aggregation, combining data sets
  • Character manipulation, stringr package

Reading data

  • Txt files
  • CSV files
  • XLS, XLSX files
  • SPSS, SAS, Stata,… and other formats data
  • Exporting data to txt, csv and other formats
  • Accessing data from databases using SQL language

Probability distributions

  • R as a set of statistical tables
  • Examining the distribution of a set of data
  • One- and two-sample tests

Grouping, loops and conditional execution

  • Grouped expressions
  • Control statements
    • Conditional execution: if statements
    • Repetitive execution: for loops, repeat and while

Day 3

Writing your own functions

  • Simple examples
  • Defining new binary operators
  • Named arguments and defaults
  • The '...' argument
  • Assignments within functions
  • More advanced examples
    • Efficiency factors in block designs
    • Dropping all names in a printed array
    • Recursive numerical integration
  • Scope
  • Customizing the environment
  • Classes, generic functions and object orientation

Statistical analysis in R

  • Linear regression models
  • Generic functions for extracting model information
  • Updating fitted models
  • Generalized linear models
    • Families
    • The glm() function
  • Classification
    • Logistic Regression
    • Linear Discriminant Analysis
  • Unsupervised learning
    • Principal Components Analysis
    • Clustering Methods (k-means, hierarchical clustering, k-medoids)
  • Survival analysis
    • Survival objects in r
    • Kaplan-Meier estimate
    • Confidence bands
    • Cox PH models, constant covariates
    • Cox PH models, time-dependent covariates

Graphical procedures

  • High-level plotting commands
    • The plot() function
    • Displaying multivariate data
    • Display graphics
    • Arguments to high-level plotting functions
  • Basic visualisation graphs
  • Multivariate relations with lattice and ggplot package
  • Using graphics parameters
  • Graphics parameters list

Automated and interactive reporting

  • Combining output from R with text
  • Creating html, pdf documents

 

Vittnesmål

★★★★★
★★★★★

Relaterade Kategorier

Relaterade Kurser

Rabatterade kurser

Nyhetsbrev & Erbjudanden

Anmäl dig till vårt nyhetsbrev så får du information om aktuella rabatter på öppna kurser. Vi respekterar ditt privatliv, så att din e-postadress kommer endast att användas för sändning vårt nyhetsbrev. När som helst kan du ändra inställningarna eller helt avbeställa den.

Våra kunder

is growing fast!

We are looking to expand our presence in Sweden!

As a Business Development Manager you will:

  • expand business in Sweden
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

This site in other countries/regions