Last updated
Kurskod
dlfortelecomwithpython
Varaktighet
28 timmar (vanligtvis 4 dag inklusive pauser)
Krav
- Experience with Python programming
- General familiarity with telecom concepts
- Basic familiarity with statistics and mathematical concepts
Audience
- Developers
- Data scientists
Översikt
Maskinlärning är en gren av artificiell intelligens där datorer har förmågan att lära sig utan att vara explicit programmerade.
Djup lärande är ett underfält av maskininlärning som använder metoder baserade på lärandata representationer och strukturer som neurala nätverk.
Python är ett högnivåprogrammeringsspråk känd för sin tydliga syntax och kodläsbarhet.
I denna instruktörledda, live-utbildning kommer deltagarna att lära sig hur man implementerar djuplärningsmodeller för telecom med hjälp av Python när de går igenom skapandet av en djuplärande kreditriskmodell.
Vid slutet av denna utbildning kommer deltagarna att kunna:
-
Förstå de grundläggande begreppen djupt lärande.
Lär dig applikationerna och användningarna av djupt lärande i telecom.
Använd Python, Keras och TensorFlow för att skapa djuplärningsmodeller för telecom.
Bygg din egen djuplärande kundchurn prognosmodell med hjälp av Python.
Format för kursen
-
Interaktiv föreläsning och diskussion.
Många övningar och övningar.
Hand-on implementering i en live-lab miljö.
Kursanpassningsalternativ
-
För att begära en anpassad utbildning för denna kurs, vänligen kontakta oss för att arrangera.
Kursplan
Introduction
Fundamentals of Artificial Intelligence and Machine Learning
Understanding Deep Learning
- Overview of the Basic Concepts of Deep Learning
- Differentiating Between Machine Learning and Deep Learning
- Overview of Applications for Deep Learning
Overview of Neural Networks
- What are Neural Networks
- Neural Networks vs Regression Models
- Understanding Mathematical Foundations and Learning Mechanisms
- Constructing an Artificial Neural Network
- Understanding Neural Nodes and Connections
- Working with Neurons, Layers, and Input and Output Data
- Understanding Single Layer Perceptrons
- Differences Between Supervised and Unsupervised Learning
- Learning Feedforward and Feedback Neural Networks
- Understanding Forward Propagation and Back Propagation
- Understanding Long Short-Term Memory (LSTM)
- Exploring Recurrent Neural Networks in Practice
- Exploring Convolutional Neural Networks in practice
- Improving the Way Neural Networks Learn
Overview of Deep Learning Techniques Used in Telecom
- Neural Networks
- Natural Language Processing
- Image Recognition
- Speech Recognition
- Sentiment Analysis
Exploring Deep Learning Case Studies for Telecom
- Optimizing Routing and Quality of Service Through Real Time Network Traffic Analysis
- Predicting Network and Device Failures, Outages, Demand Surges, etc.
- Analyzing Calls in Real Time to Identify Fraudulent Behavior
- Analyzing Customer Behavior to Identify Demand for New Products and Services
- Processing Large Volumes of SMS Messages to Gain Insights
- Speech Recognition for Support Calls
- Configuring SDNs and Virtualized Networks in Real Time
Understanding the Benefits of Deep Learning for Telecom
Exploring the Different Deep Learning Libraries for Python
- TensorFlow
- Keras
Setting Up Python with the TensorFlow for Deep Learning
- Installing the TensorFlow Python API
- Testing the TensorFlow Installation
- Setting Up TensorFlow for Development
- Training Your First TensorFlow Neural Net Model
Setting Up Python with Keras for Deep Learning
Building Simple Deep Learning Models with Keras
- Creating a Keras Model
- Understanding Your Data
- Specifying Your Deep Learning Model
- Compiling Your Model
- Fitting Your Model
- Working with Your Classification Data
- Working with Classification Models
- Using Your Models
Working with TensorFlow for Deep Learning for Telecom
- Preparing the Data
- Downloading the Data
- Preparing Training Data
- Preparing Test Data
- Scaling Inputs
- Using Placeholders and Variables
- Specifying the Network Architecture
- Using the Cost Function
- Using the Optimizer
- Using Initializers
- Fitting the Neural Network
- Building the Graph
- Inference
- Loss
- Training
- Training the Model
- The Graph
- The Session
- Train Loop
- Evaluating the Model
- Building the Eval Graph
- Evaluating with Eval Output
- Training Models at Scale
- Visualizing and Evaluating Models with TensorBoard
Hands-on: Building a Deep Learning Customer Churn Prediction Model Using Python
Extending your Company's Capabilities
- Developing Models in the Cloud
- Using GPUs to Accelerate Deep Learning
- Applying Deep Learning Neural Networks for Computer Vision, Voice Recognition, and Text Analysis
Summary and Conclusion
Vittnesmål
We also do Consultancy!
We work with leading clients across a wide range of technologies!
Reach out for Project | Staff Enhancement | System Audit Consulting